Electrical Properties of Neurons

a

By: Dr. Angela Nietz

How does novocaine work?

How do neurons send signals?

Electrical signals move down the axon within cells

• Electrical signals are carried by ions

Chemical signals are transmitted between cells

• Neurotransmitters

lons and lonization

- An ion is an atom or molecule that has an associated charge
 - An atom has lost or gained an electron
 - This gives an element a net positive or negative charge
 - When put in water compounds dissolve and keep their gained/lost electron

What lons are important for neurons?

Sodium (Na⁺)

Potassium (K⁺)

Chloride (Cl⁻)

This is not chlorine (chlorine in your cells would probably kill you)

Magnesium (Mg²⁺)

Calcium (Ca²⁺)

- This one is really important for neurotransmitter release
- We will come back to it soon!

	● Na ⁺	● K ⁺	● Cl ⁻	○Ca ²⁺	• Proteins
Outside cell	many	few	many	many	few
Inside cell	few	many	few	few	many
Outside	0	0	0	0 0	0 0
•		Na ⁺	~	. •	ONa⁺
•	0	K ⁺	0	K ⁺ O	
• •	ľ.	• \		• 11	
	2009	poor	12000	209170	200 1000
(lipid bilayer		XXIII	1 Alto		
00000000	xact	Jaar	puu		maa
• • •		•	Ion chan	nels	• •
0	0	0	- 0	• 1	• •
•	K ⁺	0		0 0 V+	0
0	0	Na ⁺	•	K	Na ⁺
Inside	0		•	• F	Protein O

How do neurons have electrical properties?...lons!

- lons in solution carry positive and negative charges
- The solutions inside and outside of brain cells have different amounts of ions or different concentrations
- They cannot pass freely across the cell membrane because of the lipid bilayer

The resting membrane potential

The cell membrane typically does not allow ions to pass between either side (impermeable)

A neuron "at rest" is not sending a signal

The difference in the amount of ions on either side of the membrane when the neuron is in resting state creates a difference in electric charge which we call the **Resting Membrane Potential**

The Sodium-Potassium Pump helps maintain the resting membrane potential

<u>ib.bioninja.com.au</u>

How do ions get in/out of neurons?

The cell membrane typically does not allow ions to pass between either side (impermeable)

Ion Channels

- Allow flow of ions across the membrane
- Can be opened or closed
- Specific for particular ions
- Most are closed when at rest (except K⁺)

How do ions get in/out of neurons?

- lons in solution carry positive and negative charges
- The solutions inside and outside of brain cells have different amounts of ions or different concentrations
- They cannot pass freely across the cell membrane because of the lipid bilayer (it's hydrophobic)
- Generally ions travel from areas of high concentration to low concentration when allowed to freely move until the concentration in uniform

How do ion channels open?

Ligand binding (neurotransmitters) Voltage changes Mechanical force Passive (always open)

What happens when neurons get signals from other cells?

- Neurotransmitter receptors cause
 ion channels open
- Ions move into or out of the cell
- Movement of the membrane toward 0 mV is a **depolarization**
 - This excites the cell meaning that it is more likely to fire an action potential
 - positive ions moving in
- Movement of the membrane away from 0 mV is a hyperpolarization
 - This inhibits the cell meaning it is less likely to fire an action potential
 - positive ions moving out

What happens when neurons get multiple signals?

- Signals can either add together or cancel each other out
- Once a neuron is sufficiently depolarized (at threshold), an action potential is triggered
- An action potential is an all-ornone event (like the firing of a gun)

How do neurons communicate? The Action Potential

- An electrical signal
 - Caused by rapid opening and closing of ion channels
 - Specifically Voltage-Gated
 Sodium Channels
 - Leads to rapid changes in membrane potential
 - Typically generated by signals received by the cell which are monitored by the Axon Initial Segment
 - Once the axon initial segment reaches threshold an action potential is generated

The Action Potential

© 2013 Sinauer Associates, Inc.

Action Potential Propagation

During an action potential, depolarization spreads down the axon successively opening voltage-gated Na⁺ channels

After an action potential, Na⁺ channels cannot be reactivated (i.e. they're inactivated) for a period of time. This is the **Refractory Period.**

No new action potentials can be generated during this time.

This ensures action potentials cannot change amplitude and limits their frequency.

Action Potential Propagation

The action potential is all-or-none meaning:

- It either happens or doesn't
- It's the same along the length of the axon

Tetrodotoxin (TTX) and Lidocaine

Puffer fish: can ingest water to inflate many times their normal size

As a defense mechanism their organs contain a poison that is lethal to predators called Tetrodotoxin (TTX)

Works by blocking ion flow of voltagegated Na⁺ channels

This means action potentials can't happen

Ingesting this poison results in death

Lidocaine, a common anesthetic also blocks voltage-gated Na⁺ channels

Myelin

Myelin forms by glial cells wrapping layers of their membrane around axons

- Oligodendrocytes are the myelinating cells of the CNS
- Schwann cells are the myelinating cells of the PNS

Myelin protects the axon and **speeds nerve** conduction

- There are no ion channels beneath the myelin sheath
- There are a lot of voltage-gated Na⁺ channels between myelinated segments at Nodes of Ranvier
- This leads to depolarization jumping from node to node and the action potential being rapidly regenerated in a process called **Saltatory Conduction**

Saltatory Conduction

Saltatory Conduction

Multiiple Sclerosis (MS)

- Demyelinating disease of the CNS
- Causes destruction of myelin and slowed nerve conduction
- Often cause poor motor coordination, diminished sensitivity, fatigue, spasticity, and vision problems
- Often manifests in early twenties

What happens at the end of the axon?

- Once the action potential reaches the end of the axon, neurotransmitters are released into the synapse
- This provides a signal to the next cell..... Which we will cover next class period

